Phương trình p laplace là gì? Các công bố khoa học về Phương trình p laplace

Phương trình p-Laplace là một dạng tổng quát của phương trình Laplace. Phương trình p-Laplace được xác định bởi công thức: ∇ · (|∇u|^(p-2) ∇u) = 0, trong đó ∇...

Phương trình p-Laplace là một dạng tổng quát của phương trình Laplace. Phương trình p-Laplace được xác định bởi công thức:

∇ · (|∇u|^(p-2) ∇u) = 0,

trong đó ∇ là toán tử gradient của hàm u, |∇u| là độ lớn của gradient, p là một tham số dương. Phương trình p-Laplace đặc trưng cho tính chất phi tuyến và nó xuất hiện trong nhiều lĩnh vực như vật lý lý thuyết, toán học và các ứng dụng trong xử lý ảnh và nhận dạng hình ảnh.
Phương trình p-Laplace là phương trình đạo hàm riêng bậc hai phi tuyến, nó có dạng:

∇ · (|∇u|^(p-2) ∇u) = 0,

trong đó ∇ là toán tử gradient của hàm u, ∇u là vector gradient của u, |∇u| là độ lớn của gradient (|∇u| = sqrt((∂u/∂x)^2 + (∂u/∂y)^2 + (∂u/∂z)^2) trong không gian ba chiều), và p là một tham số dương.

Phương trình p-Laplace là một phương trình phi tuyến, nghĩa là nó không phụ thuộc tuyến tính vào hàm u và gradient của nó. Điều này làm cho việc giải phương trình p-Laplace trở nên khó khăn hơn so với phương trình Laplace. Đặc biệt, phương trình p-Laplace có thể có nhiều giải pháp không duy nhất và có thể có tính chất dao động, tức là không tồn tại giải pháp liên tục.

Phương trình p-Laplace xuất hiện trong nhiều vấn đề trong vật lý lý thuyết và toán học. Ví dụ, nó được sử dụng để mô phỏng các hiện tượng chảy chất lưu thông qua chất cứng, tổng quát hóa phương trình Navier-Stokes khi không đáp ứng được cho trường hợp mạnh như trong trường hợp chất lưu phân tử khí, cụ thể là chất lưu có tính chất phi tuyến. Ngoài ra, phương trình p-Laplace cũng được ứng dụng trong xử lý ảnh và nhận dạng hình ảnh để tìm ra biên đối tượng hoặc để làm mờ ảnh theo cách không tuyến tính.

Phương trình p-Laplace là một phương trình đạo hàm riêng bậc hai phi tuyến được sử dụng trong nhiều lĩnh vực như toán học, vật lý lý thuyết, kỹ thuật và khoa học máy tính.

Phương trình p-Laplace có dạng:

∇ · (|∇u|^(p-2) ∇u) = 0,

trong đó ∇ là toán tử gradient, |∇u| là độ dốc của hàm u và ∇u là gradient của hàm u. Tham số p là một số dương.

Phương trình p-Laplace là một phiên bản tổng quát của phương trình Laplace (khi p = 2) và phương trình biến thiên Burgers (khi p = 1). Khi p khác 2, phương trình p-Laplace trở nên phi tuyến và khó giải hơn.

Ví dụ, khi p = 2, phương trình p-Laplace trở thành phương trình Laplace:

∇ · (∇u) = 0,

đây là phương trình cơ bản trong lý thuyết tiếp tục và có rất nhiều ứng dụng trong nhiều lĩnh vực khác nhau như vật lý, kỹ thuật và toán học.

Khi p > 2, phương trình p-Laplace có thể cho kết quả không duy nhất và có thể có tính chất không liên tục. Điều này làm cho việc nghiên cứu và giải phương trình p-Laplace trở nên khó khăn hơn.

Phương trình p-Laplace được sử dụng trong nhiều ứng dụng thực tế như mô phỏng chảy chất lưu, tối ưu hóa và phân tích hình ảnh. Trong xử lý ảnh, phương trình p-Laplace có thể được sử dụng để giảm nhiễu, phát hiện ranh giới và nâng cao chất lượng hình ảnh.

Các bài báo, nghiên cứu, công bố khoa học về chủ đề phương trình p laplace:

Đánh giá độ dốc cho các phương trình quasilinear parabol loại p-Laplace đặc biệt với dữ liệu đo lường Dịch bởi AI
Springer Science and Business Media LLC - Tập 61 - Trang 1-41 - 2022
Chúng tôi quan tâm đến việc ước lượng độ dốc cho các nghiệm của một lớp phương trình quasilinear parabol đặc biệt với dữ liệu đo lường, có dạng nguyên mẫu được cho bởi phương trình p-Laplace parabol $$u_t-\Delta _p u=\mu $$ với ...... hiện toàn bộ
#độ dốc #phương trình quasilinear #p-Laplace #dữ liệu đo lường #hạt nhân Riesz parabol
Phương pháp phân tích tối ưu Laplace để giải các hệ phương trình vi phân riêng phần bậc phân số Dịch bởi AI
International Journal of Applied and Computational Mathematics - Tập 8 - Trang 1-18 - 2022
Trong bài báo này, một kỹ thuật lai mới mang tên phương pháp phân tích tối ưu Laplace (LODM) đã được đề xuất để xây dựng nghiệm xấp xỉ cho hệ phương trình vi phân riêng phần bậc phân số (FPDEs) với đạo hàm phân số theo nghĩa Caputo. LODM là sự kết hợp giữa biến đổi Laplace và phương pháp phân tích tối ưu. Kỹ thuật này dựa trên xấp xỉ tuyến tính của hệ phương trình FPDEs phi tuyến. Các ví dụ số đượ...... hiện toàn bộ
#phương pháp phân tích tối ưu Laplace; phương trình vi phân riêng phần bậc phân số; đạo hàm phân số; biến đổi Laplace; xấp xỉ tuyến tính
Một số tính toán phân tích A-n, S-2n động học Dịch bởi AI
Soviet Atomic Energy - Tập 62 - Trang 368-376 - 1987
Các phương trình động học A-n, S-2n trong lý thuyết vận chuyển neutron được đưa ra một giải pháp phân tích, thích hợp cho việc xác thực mã an toàn số. Một số kết quả số được trình bày cho hình học phẳng với điều kiện biên tuần hoàn, trong trường hợp tán xạ isotropic monokinetic. Chúng hóa ra rất thú vị và có thể giải thích tốt về mặt vật lý, dường như cung cấp một cái nhìn sâu sắc về các hiệu ứng ...... hiện toàn bộ
#lý thuyết vận chuyển neutron #phương trình động học #tán xạ isotropic #phân tích Helmholtz #biến đổi Laplace
Sự tồn tại của vô số nghiệm cho phương trình (p, q)-Laplace Dịch bởi AI
Nonlinear Differential Equations and Applications NoDEA - Tập 23 - Trang 1-23 - 2016
Trong bài báo này, chúng tôi nghiên cứu phương trình (p, q)-Laplace trong một miền hữu hạn dưới điều kiện biên Dirichlet. Chúng tôi đưa ra một điều kiện đủ cho hạng tử phi tuyến để tồn tại một dãy nghiệm hội tụ về không hoặc đi đến vô cùng. Hơn nữa, chúng tôi cung cấp các ước lượng trước cho các norm C 1 của các nghiệm dưới một điều kiện thích hợp đối với hạng tử phi tuyến.
#(p #q)-Laplace; nghiệm; điều kiện biên Dirichlet; hạng tử phi tuyến; ước lượng trước.
HIỆN TƯỢNG BÙNG NỔ CỦA NGHIỆM PHƯƠNG TRÌNH PARABOLIC p-LAPLACE
Trong bài báo này, chúng tôi khảo sát hiện tượng bùng nổ của nghiệm phương trình Parabolic p-Laplace. Dựa vào bất đẳng thức Hardy, chúng tôi tìm ra điều kiện để nghiệm của phương trình Parabolic p-Laplace bùng nổ tại thời điểm hữu hạn. Hơn nữa, chúng tôi ước lượng chặn trên và chặn dưới cho thời điểm bùng nổ. Những kết quả này được phát triển từ bài toán của Han vào năm 2018 (Y. Han, 2018)   và...... hiện toàn bộ
Về sự tiến hóa của sóng khuếch tán phân đoạn Dịch bởi AI
Ricerche di Matematica - Tập 70 - Trang 21-33 - 2019
Trong vật lý, các hiện tượng khuếch tán và sự lan truyền sóng có tầm quan trọng lớn; những quá trình vật lý này được điều khiển trong những trường hợp đơn giản nhất bởi các phương trình vi phân riêng phần bậc 1 và 2 theo thời gian, tương ứng. Người ta đã biết rằng trong khi phương trình khuếch tán mô tả một quá trình mà tại đó sự rối loạn lan tỏa với tốc độ vô hạn, tốc độ lan truyền của sự rối loạ...... hiện toàn bộ
#khuếch tán phân đoạn #sóng khuếch tán #phương trình vi phân #hàm Green #biến đổi Laplace #phép tính phân đoạn
KẾT QUẢ CHÍNH QUY NGHIỆM TRONG KHÔNG GIAN LORENTZ CHO PHƯƠNG TRÌNH DẠNG p-LAPLACE CHỨA SỐ HẠNG SCHRÖDINGER VỚI P>=N
Phương trình p-Laplace chứa số hạng Schrödinger có ứng dụng trong nhiều ngành khoa học. Tính chính quy nghiệm của phương trình này được nghiên cứu gần đây trên các không gian hàm khác nhau. Trong bài báo này, chúng tôi trình bày các kết quả về tính chính quy nghiệm trong không gian Lorentz cho phương trình p-Laplace chứa số hạng Schrödinger trong trường hợp . Phương pháp của chúng tôi là ...... hiện toàn bộ
#tính chính quy nghiệm #toán tử cực đại cấp phân số #Không gian Lorentz #phương trình p-Laplace #đánh giá gradient
BẤT ĐẲNG THỨC CACCIOPOLI CÓ TRỌNG CHO NGHIỆM CỦA PHƯƠNG TRÌNH P-LAPLACE
Không gian Sobolev cấp phân số có trọng có nhiều ứng dụng trong phương trình đạo hàm riêng. Trong bài báo này, chúng tôi khảo sát lớp không gian Sobolev cấp phân số có trọng, ứng với hàm trọng là hàm khoảng cách đến biên của miền xác định. Lớp k hông gian này được sử dụng để thu được một dạng bất đẳng thức dạng Cacciopoli có trọng cho bài toán p-Laplace với dữ liệu độ đo . Kết q...... hiện toàn bộ
#bất đẳng thức dạng Cacciopoli #phương trình đạo hàm riêng #phương trình p-Laplace #không gian Sobolev cấp phân số có trọng
Giải quyết các phương trình của chụp ảnh tomografi có điều kiện Dịch bởi AI
Proceedings IEEE International Symposium on Biomedical Imaging - - Trang 653-656
Việc hoãn lại quá trình phân rã có thể đôi khi thay đổi cách nhìn của chúng ta về các vấn đề hình ảnh. Để minh họa, chúng tôi cung cấp một cách tiếp cận lại đối với chụp ảnh tomografi có điều kiện (CT) trong đó hệ phương trình lớn liên thông cho hình ảnh mượt mà chưa biết được tách thành nhiều phương trình nhỏ hơn và đơn giản hơn, mỗi phương trình cho một phép chiếu riêng biệt. Do đó, CT có điều k...... hiện toàn bộ
#Computed tomography #X-ray imaging #Robot kinematics #Medical robotics #Image analysis #Background noise #Laplace equations #Biomedical imaging #Information technology #Smoothing methods
SỰ TỒN TẠI NGHIỆM CỦA PHƯƠNG TRÌNH P-LAPLACE VỚI DỮ LIỆU ĐỘ ĐO TRONG KHÔNG GIAN MARCINKIEWICZ
Trong báo cáo này, chúng tôi chứng minh sự tồn tại nghiệm của phương trình p-Laplace với dữ liệu độ đo trong không gian Marcinkiewicz. Ý tưởng chính của chứng minh là dựa vào định lí điểm bất động Schauder cho một ánh xạ liên tục, xác định trên một tập lồi, đóng, có ảnh là tập tiền compact. Để xây dựng ánh xạ thỏa các tính chất này, chúng tôi áp dụng một số đánh giá gradient của nghiệm phương...... hiện toàn bộ
#nghiệm renormalized #không gian Marcinkiewicz #phương trình p-Laplace
Tổng số: 18   
  • 1
  • 2